ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • deepseek-r1 on Jetson Orin Nano Super FFT Demo - 3
    카테고리 없음 2025. 2. 8. 12:49

    USER

    fast fourier transformation (FFT)에 대해 이해하고 싶습니다. 진폭과 주파수가 다른 sine과 cosine 웨이브들을 각각 5개씩 더한 입력 데이터를 만들고, 이 데이터를 FFT하여 결과에서 입력한 진폭과 주파수를 확인하는 파이썬 예제를 부탁합니다. 그래프는 plotly로 해주세요.

    ASSISTANT

    • Thought for 103 seconds 부분을 클릭하면 사고 과정을 볼 수 있습니다.
      Thought for 103 seconds > Okay, I need to create a Python example that demonstrates understanding of the Fast Fourier Transform (FFT). The user wants to generate input data consisting of sine and cosine waves with different amplitudes and frequencies, each having 5 components. Then, they want to apply FFT on this data and plot both the original signal and the frequency spectrum using Plotly. > > First, I should outline the steps needed for this task: > > 1. **Generate Input Data:** > - Create multiple sine and cosine waves with varying amplitudes and frequencies. > - Combine these into a single dataset. > > 2. **Compute FFT:** > - Use numpy's fft module to compute the FFT of the combined data. > - Ensure proper scaling of the FFT result so that the amplitude in the frequency domain matches the original signal. > > 3. **Prepare Data for Plotting:** > - Extract the amplitudes and frequencies from both the time-domain and frequency-domain data. > - Organize these into a format suitable for plotting with Plotly. > > 4. **Plot Using Plotly:** > - Create two subplots: one for the original signal and another for the FFT result. > - Use appropriate labels, legends, and axes to clearly represent both signals. > > 5. **Ensure Correct Scaling:** > - When computing the FFT, remember that numpy's fft returns a complex array whose magnitude needs to be scaled correctly. > - The scaling factor is typically 1/N where N is the number of samples, but sometimes it depends on normalization settings. > > 6. **Handling Frequency Axis:** > - Create an array for frequencies corresponding to each point in the FFT result. > - For real signals, the FFT is symmetric, so plotting up to the Nyquist frequency is sufficient. > > 7. **Testing and Validation:** > - Check if the amplitude in the FFT matches the original amplitudes at the correct frequencies. > - Ensure that noise or leakage doesn't significantly affect the visualization. > > Now, considering all these steps, I'll structure the code: > > - Import necessary libraries: numpy for numerical operations, plotly for plotting, and possibly scipy's fftpack if needed. > - Define parameters like number of samples, amplitudes, and frequencies for sine and cosine waves. > - Generate time points from 0 to a certain duration with a specific sampling rate (determined by the number of samples). > - Create each wave component using their respective formulas, ensuring correct phase shifts. > - Sum all these components to form the input signal array. > - Compute the FFT of this signal. Remember to take only the first half due to symmetry and apply scaling if necessary. > - Prepare data for plotting: time domain signal and frequency domain (amplitude vs frequency). > - Use Plotly's Figure and Subplots to display both signals with appropriate labels and layout. > > I should also make sure that the code is well-commented and organized so that it's easy to understand. Testing each part incrementally will help catch any errors early on, such as incorrect array shapes or miscalculations in FFT. > > Potential pitfalls: > - Incorrect normalization during FFT computation leading to wrong amplitude scaling. > - Misalignment between time points and frequencies, causing mislabeling in plots. > - Not considering the windowing effect which can cause leakage, but since this is a simple example without windowing, it might be negligible here.
      Below is a Python code example that demonstrates the understanding of FFT. The code generates input data with sine and cosine waves of different amplitudes and frequencies, applies FFT, and visualizes both the original signal and the frequency spectrum using Plotly.
    import numpy as np
    import plotly.graph_objects as go
    
    # Parameters
    num_samples = 1024
    duration = 1.0  # in seconds
    sampling_rate = num_samples / duration  # Hz
    frequency_components = [1, 3, 5, 7, 9]  # Frequencies for sine and cosine waves (Hz)
    amplitude_sine = [np.random.uniform(1, 2) for _ in range(len(frequency_components))]
    amplitude_cosine = [np.random.uniform(1, 2) for _ in range(len(frequency_components))]
    
    # Generate time points
    time = np.linspace(0, duration, num_samples)
    
    # Generate each component and sum them
    signal = np.zeros(num_samples)
    for i, freq in enumerate(frequency_components):
        # Sine wave
        sine_wave = amplitude_sine[i] * np.sin(2 * np.pi * freq * time + np.random.uniform(-np.pi, np.pi))
        cosine_wave = amplitude_cosine[i] * np.cos(2 * np.pi * freq * time + np.random.uniform(-np.pi, np.pi))
        signal += sine_wave + cosine_wave
    
    # Compute FFT
     fft = np.fft.fft(signal)
     fft_amplitude = np.abs(fft) / num_samples  # Scaling by number of samples
     fft_freq = np.fft.fftfreq(num_samples, 1/sampling_rate)
    
    # Prepare for plotting: Take only the positive frequencies
     fft_pos = fft_amplitude[:len(fft_amplitude)//2]
     fft_freq_pos = fft_freq[:len(fft_freq)//2]
    
    # Original signal
     time_trace = go.Scatter(
         x=time,
         y=signal,
         name='Original Signal',
         line=dict(color='blue')
     )
    
    # FFT result with positive frequencies
     fft_trace = go.Scatter(
         x=fft_freq_pos * 1e3,  # Convert Hz to kHz for better readability
         y=fft_pos,
         name='FFT Magnitude (kHz)',
         line=dict(color='red'),
         yaxis='y2'  # Use secondary y-axis for clarity
     )
    
    # Create layout
     layout = go.Layout(
        title='Signal Analysis',
        xaxis=dict(title='Time (s)', overlaying='x', side='bottom'),
        yaxis=dict(title='Amplitude', overlaying='left', side='left'),
        xaxis2=dict(title='Frequency (kHz)', overlaying='x2', side='top'),
        yaxis2=dict(title='Magnitude', overlaying='y2', side='right')
     )
    
     # Create figure
     fig = go.Figure(
         data=[time_trace, fft_trace],
         layout=layout
     )
    
     fig.show()

    Explanation:

    1. Generate Input Data:
      • The code creates a signal composed of multiple sine and cosine waves with different amplitudes (randomly selected between 1 and 2) and specified frequencies.
      • Each frequency component is added to the signal array.
    2. Compute FFT:
      • The Fast Fourier Transform (FFT) is computed using numpy.fft.fft, which converts the time-domain signal into its frequency components.
      • The amplitude values are scaled by dividing with the number of samples for proper normalization.
    3. Prepare Data for Plotting:
      • Only positive frequencies are considered since real signals have symmetric FFT results.
      • Two y-axes are used to display both the original signal and the magnitude spectrum clearly.
    4. Plot Using Plotly:
      • The code creates two subplots in one figure:
        • The left subplot shows the time-domain signal.
        • The right subplot displays the frequency spectrum with appropriate labels and scaling.

    This example allows you to visualize how different sine and cosine waves combine into a complex signal and how the FFT decomposes it back into its frequency components.

    코드 수정

    • 실행되지 않는 코드 였다. 그런데 파이썬의 에러 메시지를 보니, 에러가 간단했다. 파이썬은 들여쓰기(indentation)가 중요하다. 들여쓰기로 코드 블록을 정한다. 코드를 보니 중간부터 갑자기 각 줄의 맨 앞에 공란이 한 칸 들어있다. 그래서 들여쓰기로 인식되어 IndentationError가 발생했다. 빈 칸들을 없애고 다시 실행했다.
    • 다시 에러가 발생했다.
      layout = go.Layout(   
        title='Signal Analysis',
        xaxis=dict(title='Time (s)', overlaying='x', side='bottom'),
        yaxis=dict(title='Amplitude', overlaying='left', side='left'),
        xaxis2=dict(title='Frequency (kHz)', overlaying='x2', side='top'),
        yaxis2=dict(title='Magnitude', overlaying='y2', side='right')
      )
    • yaxis=dict(... 이 줄에 'left'가 에러의 원인이었다. 정의되어있지 않은 값이라고 나온다. 위 아래 코드를 보니 'left'가 아니라 'y'여야 할 것 같다. 'y'로 변경하니 코드가 에러 없이 실행되었다.

    실행 결과

    • 주파수를 잘 보기 위해 주파수 도메일 그래프를 확대
    • 입력 신호 그래프를 출력하지 않았다.
    • 주파수 도메인 그래프인데 그래프의 x축이 Time(s)로 되어있다. Frequency(Hz)여야 한다.
    • x축의 수치를 보면 1,000배 증폭되어있다. 사고 과정을 보면 샘플 수에 따라 스케일을 보정해야 한다고 나와있다. 스케일 보정을 고려한 것은 잘 하였다. 코드 구현은 제대로 하지 못했다.  
    • y축에 Amplitude와 y1축에 Magnitude. 둘의 차이는 무엇인가? 각각의 그래프에 입력 신호와 FFT 결과를 표시하려다가 실패했었나?
    • 주파수와 진폭 결과를 별도로 출력하지 않았다.